
J Glob Optim (2009) 43:191–205
DOI 10.1007/s10898-007-9217-2

A kriging based method for the solution of mixed-integer
nonlinear programs containing black-box functions

Eddie Davis · Marianthi Ierapetritou

Received: 4 April 2007 / Accepted: 13 July 2007 / Published online: 4 August 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper a new methodology is developed for the solution of mixed-integer
nonlinear programs under uncertainty whose problem formulation is complicated by both
noisy variables and black-box functions representing a lack of model equations. A branch-
and-bound framework is employed to handle the integer complexity whereby the solution to
the relaxed nonlinear program subproblem at each node is obtained using both global and
local information. Global information is obtained using kriging models which are used to
identify promising neighborhoods for local search. Response surface methodology (RSM)
is then employed whereby local models are sequentially optimized to refine the problem’s
lower and upper bounds. This work extends the capabilities of a previously developed kri-
ging-response surface method enabling a wider class of problems to be addressed containing
integer decisions and black box models. The proposed algorithm is applied to several small
process synthesis examples and its effectiveness is evaluated in terms of the number of func-
tion calls required, number of times the global optimum is attained, and computational time.

Keywords Black-box models · Optimization · Mathematical modeling · Kriging ·
Response surface

1 Introduction

Process synthesis problems are difficult to solve when the problem formulation contains
black-box models for which noisy input–output sampling data are the only information avail-
able. A black-box representation describes individual process units whose design equations,
such as rate expressions, are unavailable. The process behavior is described by input–output
data which may be noisy due to environmental conditions, or as a result of the detail employed
in a computational model such as a CFD simulation. Black-box models are also used in the
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cases when legacy codes are the only information available for the description of process
behavior. Synthesis and design policies for new product campaigns are often based on sim-
ulation data assuming ideal process operation. To better represent realistic scenarios, the
problem addressed in this paper is the synthesis and design optimization problem containing
black-box units.

This problem presents four main challenges. First, should a local or global model be
used to approximate the black-box function? Local models provide a limited understanding,
while global models are more expensive to build. Since there may be multiple black-box
units, coarser models may need to be used in order to maintain reasonable computational
expense. At the same time, how can accurate models be constructed in reasonable CPU time
so that suboptimal solutions can be avoided? Second, how can the true process behavior be
captured instead of the noise? The use of derivative-based optimization techniques can lead
to the discovery of artificial optima due to iterates becoming trapped by the noise. This prob-
lem appears if surrogate models fit the noise instead of the actual process behavior. Third,
given that sampling-based models are often built using symmetrically arranged collocation
points, how can reliable models be constructed for problems whose feasible region is convex
but not symmetrical? When solutions reside along feasible region boundaries, it may not be
possible to obtain sampling information according to a symmetrical design in the current
design space. Fourth, due to the combinatorial nature of the problem, how can the global
optimal solution be obtained at reasonable computational cost?

The objective of this paper is to present a new algorithm in order to solve Mixed-Inte-
ger Nonlinear Programs (MINLP) containing black-box functions and noisy variables. This
work is an extension of our previous work in which a solution methodology is presented for
nonlinear problems (NLP) involving black-box models and noisy variables [10]. The new
method addresses the integer complexity using a Branch-and-Bound framework, enabling the
previously developed techniques to handle a larger class of problems. In the new algorithm,
kriging is used to construct global models of all black-box units. At each node, a kriging pre-
dictor describing the behavior of the relaxed NLP objective is employed to identify regions
of potential optima. Response surface techniques are then applied to local models in order
to refine the set of candidate solutions. The global model building expense is offset by the
identification of more reliable lower and upper bounds (LB/UB) at each node, improving the
speed at which the global optimum to the MINLP is obtained.

In the complementary field of deterministic global optimization, a similar framework has
been presented to address the solution of NLP containing nonanalytical differentiable con-
straints [21]. The global model applied in [21] assumes the form of a blending function from
which valid over- and under-estimators can be generated in order to provide ε-guarantee of
global optimality. The family of αBB algorithms (αBB, SMIN-αBB, GMIN-αBB) targets the
solution of twice-differentiable nonconvex NLP and MINLP having restricted participation
in the binary variables [1–4]. These methods rely on the generation of valid convex underes-
timators for the lower bounding problems in order to overcome the algorithmic difficulties
presented by the nonconvex functions.

A variety of techniques have also been applied in the field of stochastic programming
towards the solution of MINLP containing variables with uncertainty. One class of tech-
niques determines the solution based on information obtained from complementary deter-
ministic problems created after obtaining sampling realizations in the uncertain space. More
specifically, Outer Approximation is used to solve MILP and NLP subproblems formulated
using the sample average approximation method [27]. Confidence intervals on LB/UB are
refined by solving a higher number of replicated subproblems created from an additional
number of realizations in the uncertain space. This methodology has been extended by using
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the simplicial approximation approach to describe the feasible region using a convex hull
approximation [15]. These methods assume model equation availability in order to obtain lin-
earization information, so they cannot be directly applied towards the solution of the problem
involving black-box models.

In order to circumvent this problem, a second class of techniques can be used which
rely on zero-order techniques to find the integer global solution. Derivative-free methods
can be coupled with process simulators such as PRO-II and ASPEN, thereby enabling the
uncertainty complications to be addressed outside of the simulation environment without
losing the synthesis capabilities built around deterministic models. This approach is used by
[8] whereby a stochastic annealing algorithm is wrapped around ASPEN in order to obtain
the solution of a hydrodealkylation synthesis under uncertainty. However, since surrogate
models are not constructed when using zero-order techniques such as Nelder-Mead [5],
Divided Rectangles [19], multilevel coordinate search [17] and differential evolution [26],
convergence to the optimum can be slow, motivating the use of gradient-based algorithms
applied to data-driven models. The key problems associated with using first- and second-
order techniques are asymptotic convergence and premature termination due to the artificial
local optima resulting from noise. Modifications to gradient-based techniques overcome the
latter problem using finite differences of large enough interval length to filter out noise [7,13].
However, the limited understanding of system behavior motivates the application of methods
for which optimization is applied once surrogate models have first been built. Response sur-
face optimization techniques belong to a class of local methods in which gradient techniques
can be sequentially applied to inexpensive fitted local models known as response surfaces
[22]. The response surface assumes the form of a low-order polynomial that is minimized
to find the next candidate solution. A new response surface centered at the new iterate is
built and minimized, and the procedure is repeated until a convergence criterion such as a
prespecified decrease in the objective function has been attained. Sampling expense is the
primary source of the optimization cost since the least-squares models can be built cheaply.
In our recent work, an algorithm employing (1) adaptive experimental designs to retain fea-
sibility, and (2) projection of the n-dimensional response surface onto constraints, has been
successfully applied towards identifying NLP solutions in higher dimensions described by
arbitrary convex feasible regions [10]. In addition to local optimization of response surfaces,
global methods have also been studied for box-constrained problems which rely upon a larger
set of basis functions used in response surface construction [16,18,20,23].

In order to overcome the limited understanding of system behavior obtained using response
surfaces, global models can also be constructed. A kriging model is one example of a global
representation that also includes a description of prediction uncertainty since normally dis-
tributed random function models are used [14]. The field of kriging originated in 1951 and
was targeted at determining the spatial distribution of mineral deposits in mining applica-
tions based on physical sampling data. More recently, kriging has been increasingly applied to
develop models based on the complementary field of computer experiments when simulation
is used to describe complex processes [24]. Kriging is an interpolation technique whereby a
prediction and its variance (z̃2, σ̃

2(z̃2)) at test point xk are obtained according to a weighted
sum of the nearby sampling data. Global prediction and variance mappings are generated
after obtaining information from a set of points defined by feasible region discretization.
Additional sampling is conducted in high-variance regions leading to improved models with
reduced overall prediction uncertainty. The main limitation associated with kriging is that the
model building costs are higher compared to response surface methods since a more detailed
description of process behavior is obtained. Once a stopping criterion has been achieved,
such as convergence in the average prediction value, response surface methodolgy (RSM)
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can be applied to promising local regions in order to identify the global optimum. If the prob-
lem dimensionality increases due to the presence of multiple black-box units, kriging model
building costs can significantly increase, an issue addressed in our proposed methodology.
The remainder of the paper is organized as follows. In Sect. 2 the details and algorithmic
features of the proposed method are presented. The proposed method is applied to several
numerical examples in Sect. 3, and concluding remarks are given in Sect. 4.

2 Solution approach

The problem addressed in this work has the following form:

min F(x, y, z1, z2)

s.t. g(x, y, z1, z2) ≤ 0

h(x, y, z1) = 0

z2(x) = �(x) + ε(x) (1)

ε(x) ∈ N (x |µ, σ 2)

x ∈ �n, y ∈ {0, 1}q

In this formulation, x and y represent continuous and binary variables, respectively. The
deterministic variables z1 describe outputs whose modeling equations h(x, y, z1) are known.
Stochastic output variables z2 exist when the input–output functionality �(x) is black-box
simulated by a deterministic output perturbed with noise. Synthesis equations are given by
g(x, y, z1, z2) which include design constraints, operating specifications, and logical rela-
tions. The noise is described by a normally distributed error whose properties can change
depending upon the spatial location of x .

In Sub-Section 2.1, the basic idea of the Branch-and-Bound (B&B) Kriging-RSM is pre-
sented as a technique for solving the class of problems described by (1). Sub-Section 2.2
describes how kriging is used to build global models and Sub-Section 2.3 explains how the
best kriging solutions are further refined by optimizing response surfaces. Sub-Section 2.4
provides additional algorithmic details of the new B&B Kriging-RSM method.

2.1 Method outline

The central idea of the proposed algorithm for the solution of problem (1) is to use a B&B
framework whereby at each node, kriging predictors built for each black-box process unit
serve as basis functions in the construction of kriging predictors for the relaxed NLP objective.
Using the global model of the objective, promising regions for local search are identified that
serve as starting neighborhoods for refinement of the candidate solution set using sequential
response surfaces. In order to reduce sampling and model building costs, RSM is applied
to coarse kriging predictors during the initial stages of optimization. The kriging models
are refined by incorporating RSM sampling data enabling tighter LB/UB solutions to be
determined over the course of optimization.

During the early stages of the optimization computational cost is reduced by (a) use of
coarse global models at early nodes and (b) use of weaker stopping tolerances for the kriging
and RSM stages. More specifically, at the first node of the B&B tree, the global model is
built using NT est points. For each subsequent level of the B&B tree, global model accuracy
is improved by using 10–25% additional test points relative to the number employed at the
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previous level. For the examples presented in Sect. 3, NT est is set at 1,000. A second method
of reducing early computation expense relies upon a weak initial stopping criterion for global
model improvement which is successively increased. This criterion is based on whether sam-
pling data match predicted minima within a given tolerance, or whether convergence in the
average value of the set of kriging predictions is observed. At the first node, the initial toler-
ance TolKrig might be satisfied if the average prediction value falls within 90% of the value
at the previous iteration. The value of TolKrig could be increased to 95% for the second level,
and to 99% for all subsequent levels. By applying these rules, a 10–15% decrease in total
number of function calls is observed for the presented examples.

Kriging models are built for both the black-box units and the relaxed objective at each
node. Since the relaxed NLP objective may differ from node to node depending upon binary
variable assignments, a new kriging predictor may need to be constructed for each NLP
subproblem. The kriging model of each black-box process describes unit-specific system
behavior, whereas the kriging model of the relaxed NLP objective is created for optimization
purposes in order to identify the best regions for local search. Once the global models for all
black-box units have been created, this information is incorporated into the construction of
any arbitrary objective while avoiding unnecessary sampling duplication. After refining the
kriging solution using RSM, the optimum is classified as a lower or upper bound based on
integer feasibility in y. If a stopping criterion based on the difference in the LB/UB is not
met, B&B fathoming criteria are then applied to determine whether new subproblems should
be formulated. Additional details are provided in [12].

2.2 Kriging methodology

The kriging methodology models the black-box system by considering each noisy output to
be the realization of a random function. Based on this idea, a global covariance model is also
employed to describe system behavior. The covariance model is built using limited sampling
data and is used to determine weights for function values f (xi ) corresponding to a set of
sampling points xi near test point xk . A prediction at test point xk can then be generated as
the weighted sum of f (xi ). An alternative interpretation of the kriging predictor is that it
corresponds to an approximation based on function value differences evaluated for xk and
nearby sampling points xi . Formally, the kriging predictor of the stochastic output z̃2(xk) is
linearly weighted sum of N function values at nearby sampling points as given below:

z̃2(xk) =
NCluster∑

i=1

f (xi )λ(xi ) (2)

where z̃2(xk) represents the prediction value at test point xk . The weights are determined
in a manner similar to that of inverse distance methods, i.e. they are a decreasing distance
function of xk . In addition, the methodology avoids placing disproportionate weighting to
clustered sampling data. From the set of N sampling data, squared function value differences
Fi j can be calculated and plotted based on sampling-point pair distances.

Fi j = [
f (xi ) − f (x j )

]2
i, j = 1 . . . N , i �= j (3)

Using the scatterpoint data, a model known as a semivariance function is fitted which de-
scribes how rapidly the function is expected to change in value based on increasing distance
from xi or xk . The semivariance function is fitted from a plot of Fi j as a function of xi − x j

distance, also known as lag distance h. Due to the plot complexity as shown in Fig. 1a,
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Fig. 1 Data smoothing applied to squared function differences (a) in order to obtain a semivariogram fit (b)
and covariance function fit (c)

a resulting fit to one of the established semivariance models in the literature is not usually
immediately apparent.

To alleviate this problem, data smoothing can be applied to achieve a better fit from a
reduced set of scatterpoints known as semivariances γ (hm) as shown in Fig. 1b. Semivari-
ances are averaged squared function differences constructed at distances hm for P intervals:

γ (hm) = 1

2N (hm)

N (hm )∑

r=1

[
f (xr

i ) − f (xr
j )

]2
m = 1 . . . P, i �= j (4)

where N (hm) is the number of sampling pairs (xr
i , xr

j ) whose separation distance lies inside
the hm interval. After obtaining the semivariance function parameters, the model is then
reflected between the x-axis and its asymptotic maximum (known as the sill) to generate
the corresponding covariance function displayed in Fig. 1c. Kriging weights are then deter-
mined by using covariance information based on nearby sampling point-test point distances
as shown in the Lagrangian representation presented in (5).

[
λ(xk)

λ′(xk)

]
=

[
Cov(d(xi , x j )) 1
1 0

]−1 [
Cov(d(xi , xk))

1

]
i, j = 1 . . . NCluster , i �= j (5)

where � = [λ(xk) ;λ′(xk)] represents the weight vector and Lagrange multiplier vector,
respectively. Once the weights are obtained, the kriging prediction z̃2(xk) and its expected
variance σ̃ 2(xk) are then obtained according to Eqs. (2) and (6), respectively:

σ̃ 2(xk) = σ 2
max −

NCluster∑

i=1

λ(xi )Cov [d(xi , xk)] − λ′(xk) (6)

After obtaining kriging and variance predictions for all test points at the current iteration m,
the average prediction value µm,Pred is obtained and compared against the expected value
found at the previous iteration µm−1,Pred . If the value of µm,Pred is lower than some per-
centage T olKrig of µm−1,Pred , the kriging predictor is not yet considered to be a reliable
global model. Additional sampling is then performed in regions of high uncertainty char-
acterized by either high prediction variances, or instead at points whose kriging prediction
value has changed significantly between iterations [10]. It should be noted that the set of new
collocation points should be ideally spaced far apart from one another thereby maximizing
the global sampling information value obtained. Sampling at points taken from a single high-
variance region emphasizes local model improvement and results in a limited understanding
of additional global behavior. Local optimization using response surfaces is performed only
after confidence in the global model has been established. However, the number of sampling
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points required to build local models in high-dimensional systems can become high even
when the problem dimensionality in the BB inputs is > 5. To alleviate this problem, further
sampling is also conducted at points generated from refined grids of promising regions while
still improving the model at the kriging level.

The kriging algorithm proceeds as follows for obtaining a prediction at xk . First, the fea-
sible region is described based on g(x, y, z1, z2) and h(x, y, z1), where g(x, y, z1, z2) is
assumed to be explicitly defined in x after having obtained sampling data z2 from upstream
units. A sampling set � is generated whose initial size ranges between 10 and 20 dispersed
data locations for problem dimensions of up to fifteen variables. As long as the starting size
of � is not too small, the number of iterations required to achieve convergence in µm,Pred

will be relatively insensitive to this number. The initial number of sampling points in � is
small, placing emphasis on further sampling as needed during the iterative stages of predic-
tor refinement. The location xk is specified and NCluster nearest-neighbor sampling points
are chosen from � based on the L2-norm relative to xk . NCluster usually varies between 5
and 10 regardless of problem dimension, although the estimate is potentially skewed if sam-
pling information is sparse. Semivariances are then generated using all sampling data within
�. The best semivariogram model is obtained using least squares, and the complementary
covariance function is generated. The symmetrical matrix hCluster is built describing sam-
pling-pair distances among the set of NCluster points. Similarly, the vector h0 is constructed
from sampling-point distances relative to xk . The covariance matrices C and D are built using
information from hCluster and h0, respectively. The kriging weights � are then obtained from
solving the linear system of equations as presented in (5) and the prediction z̃2(xk) and its
variance σ̃ 2(xk) are determined. A flowchart of the kriging algorithm ispresented in Fig. 2.
In the next sub-section the response surface method is discussed whereby the best kriging
solutions are further refined in order to improve the NLP solution.

2.3 Refinement of local optima using RSM

The main advantage of using response surfaces is that they provide inexpensive, yet accurate,
approximations of local function behavior using low-dimensional polynomial approxima-
tions fitted to noisy data. These models can then be optimized using standard gradient tech-
niques. Least-squares fitting enables models to be built which more closely describe the true
functionality instead of the noise, enabling more reliable search directions to be identified.
When building the response surface, the set of input points typically conforms to a stencil
arrangement known as an experimental design that is centered about an iterate [6,22]. The
central composite design shown in Fig. 3 requires (1 + 2n + 2n) sampling points for a prob-
lem of dimension n and is the template used at the RSM refinement stage in this paper. This
design is associated with a lower sampling expense relative to the factorial design since data
are not obtained at every factor-level combination. When used in combination with kriging,
the starting iterates are initialized at the best solutions for the set of promising local regions.

At the start of the algorithm, the iteration index r is initialized at a value of unity. A response
surface is built around a starting iterate xr using a collocation set xcoll,r determined by the
CCD and local model radius br . The starting iterate xr with objective value fopt,r corre-
sponds to the optimal solution fact of the kriging model for the objective. Sampling occurs
at the response surface minimun xopt,r+1 and the optimum is updated if fopt,r+1 is now
the current best objective value. If the difference between the current and previous optimum
| fopt,r+1− fopt,r | falls below TolRSM , the algorithm terminates with [xopt,r+1, fopt,r+1] estab-
lished as the RSM solution. Otherwise, another response surface is constructed at xopt,r+1

with corresponding bounds br+1 and the value of r is increased by unity. The value of br+1
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Terminate 

n < NTest?

Obtain sampling set  throughout feasible region
Obtain NCluster sampling points near xk, NCluster

Obtain semivariances based on sampling information from 

Build the matrix hCluster(i,j) for i,j xCluster,k (sampling pair distances in xCluster,k).
Build the vector h0(i,k) = ||xCluster,i – xk||2 (sampling point – test point distance). 
Obtain covariance matrix C for hCluster(i,j) and covariance vector D for h0(i,k).

Fit semivariogram model coefficients 
(spherical/Gaussian/exponential/power/linear)

Select best fitted semivariogram model and corresponding 2

Obtain covariance function Cov(h) = 2 – h

Obtain kriging weights  = [ ; ']  by solving (C  = D

s.t. = 1) using Lagrangian  

Obtain new prediction 2 ( )k  = (xi)f(xi)| i xCluster,k)

Obtain error variance 2 ( )kx  = 2 – D- '

Generate global model test point set containing Ntest points. Initialize test point index n = 1

n = n + 1

No

Yes

Fig. 2 Flowchart of Kriging algorithm for obtaining a prediction at test point xtest

Fig. 3 Central composite design
for response surface generation in
2-D

will be different from br if the Euclidean distance between the current and previous solution
vectors is found to be lower than the value of br . During the later stages of the algorithm,
xopt,r+1 will be near xopt,r signifying that the basin of the RSM optimum has been reached.
At this point, a more accurate description of the system behavior near the optimum can
be attained using smaller response surfaces. Whenever iterates are close to the boundaries,
lower-dimension response surfaces are created by projecting the model onto the constraint so
as to prevent model generation based on an asymmetrical arrangement of the feasible sam-
pling data. More details can be found in our earlier work [10]. A flowchart of the algorithm
is presented in Fig. 4. In the next section, B&B, Kriging, and RSM are assimilated into a
hybrid method targeted at solving the MINLP described by (1).

2.4 Branch-and-Bound Kriging-RSM algorithm

By combining the kriging-RSM algorithm used for obtaining NLP solutions with B&B, the
integer global solution of MINLP can be efficiently found since the B&B fathoming criteria
limits the number of NLP subproblems that have to be solved. The source of the computational
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fopt,r+1 – fopt,r < TolRSM?

Obtain sampling set (x,f)coll,r using experimental design. Fit and minimize response surface 

Initialize stopping tolerance TolRSM and proportionality constant Initialize iteration index r,
bounds br and starting iterate xr with corresponding function value fr. Initialize fopt,r = fr.

TERMINATE: [xopt,r , fopt,r] is the optimal solution 

xr+1 = argmin(fopt,r+1)
xr   = argmin(fopt,r)
br+1 = min(bold, ||xr+1-xr||2)
r = r + 1

No Yes 

Fig. 4 Flowchart of RSM algorithm

expense for the optimization lies in generating reliable kriging models for both the black-box
models and node-specific relaxed NLP objective functions. Although kriging predictors will
be constructed for the black-box units over their corresponding operability ranges, additional
kriging models for the black-box functions may need to be developed within subregions of
the box-constrained feasible region.

Due to the noise and the presence of black-box units, global optimality cannot be guar-
anteed. The identification of suboptimal solutions at each node can delay search and even
cause integer feasible solutions to be missed. As a result it is unlikely that local optimization
using response surfaces can lead to the discovery of the global optimal solution if the correct
neighborhood has not first been identified using the kriging predictor. One way of addressing
this problem is to apply ideas similar to the ones used by [11,20]. Let the number of black-box
units be R and let S replicate sets of the R kriging predictors be created based on different
nominal sampling sets. The converged kriging mappings are not necessarily the same since
they are built using different initial collocation points. For each sth set of R global models,
s = 1. . .S, the corresponding mapping of the node-specific objective function is built and
the optimal objective function Fpred,krig,s is obtained. Both the mean and variance of the
objective function {Fpred,krig,s |s = 1. . .S} are then obtained and used as a point estimate
and confidence interval for the global solution. If integrality in the binary variables is sat-
isfied, the point estimate is an upper estimate of the upper bound, otherwise, it is an upper
estimate of the lower bound. Next, optimization is performed at the RSM level. The best
kriging solution of the S replicates is then refined using RSM T times where T > S. Let
the set of refined RSM solutions be represented by FRSM,t |t = 1 . . . T . Both the mean and
variance of [FRSM,t |t = 1 . . . T ] can then be obtained and used as a lower estimate of the
solution regardless of whether it is a lower or an upper bound. The application of replicate
kriging sets increases confidence in the global optimum; however, sampling costs can become
prohibitive.

The Branch and Bound Kriging-RSM algorithm proceeds as follows. First, stopping toler-
ances are established. The TolKrig and TolKrig,Obj parameters are used to terminate kriging
predictor improvement for a process unit output and the relaxed NLP subproblem objective
at an arbitrary node, respectively. The TolB B parameter is used to terminate further search
in the Branch and Bound stage based on the difference between the lower and upper bound.
This parameter is applied in order to avoid solving additional NLP subproblems whenever
the improvement in the objective is expected to be low. Sampling data are then obtained in
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order to create kriging predictors for the black-box units. The relaxed NLP is formulated at
the first node and the kriging model of the corresponding objective is generated. The best
kriging solutions are identified and sampling is performed at locations of predicted optima
to confirm global model reliability for the black-box units. If the difference between the
sampled and predicted objective values exceeds TolKrig,Obj , global improvement is con-
sidered necessary. It should be noted that a subset of the inputs x in each sampling vector
may actually be noisy outputs z2 from upstream black box units. For each black box unit,
the set of sampled data z2,act is compared against the set of corresponding kriging predic-
tions z̃2,Pred . Further sampling is then conducted for the subset of global models in which
|z2,act − z̃2,Pred | > T olKrig in order to improve the kriging predictors. Once the differ-
ence | fact − f pred | falls below TolKrig,Obj , the best kriging solutions f pred are refined by
sequential optimization of response surfaces. An alternative stopping criterion TolKrig that
can be applied involves determining the average value of the set of predictions for each
iteration. Once convergence has been achieved in this average value for all black box units,
the optimal kriging solutions for the objective are identified for refinement using RSM. Due
to feasible region partitioning, the number of sampling points required for response surface
building decreases as 0–1 assignments are made in the binary variables which can signifi-
cantly reduce the sampling expense as evidenced by the results in the presented examples.

For a given NLP subproblem, if the best kriging solution lies within the basin of an opti-
mum, it will be identified using RSM. In order to determine whether additional optima exist,
RSM is applied to the next best kriging solution. The corresponding RSM optimal solution is
compared to the one already found. If the solution is found to be inferior, further application
of RSM towards additional kriging solutions terminates. Otherwise, RSM is then applied to
the subsequent optimal kriging candidate in order to determine whether another minimum
exists. It should be noted that if the set of points xk over which the kriging model is built
does not contain vectors located near optima, it is possible for some or all of the minima
to be missed. In order to overcome this problem, the test set should be comprised of points
approximating a uniform coverage of the feasible region. The optimum is determined to be
a LB/UB depending upon 0–1 feasibility in the binary variables.

If the difference between the best LB/UB falls below TolB B , the algorithm terminates,
otherwise additional subproblems are determined according to the Branch and Bound fath-
oming criteria. A new subproblem is then selected from the candidate set and the kriging
model of the relaxed NLP objective for the new problem is constructed. If the set of new
candidate subproblems is empty, the algorithm terminates with the best UB established as
the solution to (1). A flowchart of the proposed algorithm is presented in Fig. 5 and the effec-
tiveness of the method is demonstrated with the solution of two process synthesis examples
in the next section.

3 Examples

In this section, the proposed Branch and Bound Kriging-RSM algorithm is applied to two
process synthesis problems. The first example is taken from [11] and the second example is
a modified propylene/propane separation synthesis study taken from [25]. For each example,
a table of computational results is provided that illustrates the performance of the proposed
Branch and Bound Kriging-RSM algorithm. For each algorithm, 100 trials are performed
from a set of randomly selected feasible starting iterates. Using information taken from the
subset of starting iterates successfully finding the global optimum, the average number of
nodes visited, iterations required, function calls needed, and CPU time required are also
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Terminate 
No

Select new 
subproblem 

RSM

B&B

No

Kriging

No

Yes

Yes

Yes

|fact-fpred| < TolKrig,Obj?

(UB-LB) < TolBB?

Refine fact = f opt,r using RSM to get LB/UB. Collocation  
set for building each response surface is centered around arg( fact)

Apply B&B fathoming criteria to guide new subproblem creation 

Identify kriging models 
for which

|z2,act-z2,pred| > TolKrig.

Obtain sampling data and 
create/refine kriging models 

of black-box units 

Create kriging model of relaxed NLP 
objective. Obtain best predictions {fpred}.

Sample at argmin{fpred}  {fact}

Select TolKrig,TolKrig,Obj,TolBB

Any remaining 
subproblems? 

Initialize r = 1.

Fig. 5 B&B Kriging-RSM algorithm

reported. All computational results are obtained using an HP dv8000 CTO Notebook PC
containing a 1.8 GHz AMD Turion 64 processor.

3.1 Example 1

This example involves six variables, four linear constraints, and two nonlinear constraints.
The black-box variable z2 is a function of three continuous variables and is noisy according
to a normally distributed error with standard deviation 0.01. The problem is formulated as
shown in (7):

min z2 + 5y1 + 6y2 + 8y3 + 10

s.t. z2 = −7x6 − 18 ln(x2 + 1) − 19.2 ln(x1 − x2 + 1) + N (0, 0.01)

0.8 ln(x2 + 1) + 0.96 ln(x1 − x2 + 1) − 0.8x6 ≤ 0

x2 − x1 ≤ 0

x2 − U y1 ≤ 0
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Table 1 B&B Kriging-RSM MINLP algorithm performance to find the global optimum

% Starting iterates
finding global
optimum

# Nodes # Function calls CPU time (s)

Kriging RSM Total Kriging RSM Total

Example 1 90 6 113 161 274 36.55 0.59 37.14

Example 2 86 3 74 19 93 382 94 476

Table 2 Solution information for Example 1 using the Branch and Bound Kriging-RSM algorithm

Node Fixed Optimal Kriging RSM
0–1 vbls. information

(y1,y2,y3) (x1,x2,x6,y1,y2,y3) F Iter. Func. CPU Iter. Func. CPU

calls time (s) calls time (s)

1 (–,–,–) (1.35,0.84,1,0.45,0.26,0) 1.427 5 43 44.27 5 75 1.02

2 (–,0,0) (1.05,1.05,0.71,0.53,0,0) 5.205 4 34 3.06 6 47 0.19

3 (–,1,0) (1.301,0,1,0,1,0) 6 3 25 1.58 2 13 0.14

4 (0,0,0) (0,0,0,0,0,0) 10.02 1 1 0.03 0 0 0

5 (1,0,0) (1.7,1.7,0.98,1,0,0) 7.258 4 34 2.14 3 21 0.08

x1 − x2 − U y2 ≤ 0 (7)

ln(x2 + 1) + 1.2 ln(x1 − x2 + 1) − x6 − U y3 ≤ 0

y1 + y2 ≤ 0

y ∈ {0, 1}3a ≤ x ≤ b, x = (x j : j = 1, 2, 6) ∈ �3

aT = (0, 0, 0), bT = (2, 2, 1), U = 2

The solution of the deterministic problem is (x1, x2, x6, y1, y2, y3) = (1.301, 0, 1, 0, 1, 0).
Results for this example are presented in Table 1 and Branch and Bound information for one
test run is presented in Table 2.

It is observed that the algorithm is successful at finding the integer global optimum 90%
of the time with the remainder converging at near-optimal solutions. At the first node, it is
observed that a higher number of function calls are required at the refinement stage com-
pared to the global model building phase. For computational simplicity, the test point set was
generated from 1,000 randomly selected feasible points instead of according to a discretized
grid. However, the location of the kriging optimum using the former method was inferior to
the kriging solution that would have been obtained if discretization had been applied. As a
result, multiple response surfaces are required in order to attain the best solution. The total
number of function calls required for the RSM phase at the root node is 75 since fifteen
function calls are required to build a response surface at each iteration. At subsequent nodes,
the optimal vector is quickly achieved in a subset of the continuous variables, meaning that
fewer function calls are needed to build lower-D response surfaces during the later stages of
optimization.
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3.2 Example 2 : Propylene/propane synthesis

The original case study involves the separation of a 60/40 mol% propylene/propane feed into a
99 mol% propylene distillate/95 mol% propane bottoms product, respectively using consecu-
tive 100-trayed columns. In formulating the example as a synthesis problem, the separation is
accomplished using two existing towers each having 50 and 75 trays, respectively to produce
a 94% distillate. The feed can enter either one of the columns and the distillate product from
the first column acts as feed to the second. A representation of the column superstructure is
presented in Fig. 6a.

The propylene-rich distillate product exiting the second column is to be sold while the bot-
toms products from both columns is combined for use elsewhere in the plant. The separation
is very difficult due to the close volatility between propylene and propane. A high reflux may
be required since 37.5% fewer trays are used than as in the original study, which will increase
energy costs. The problem is to determine the column sequence, operating reflux ratios, and
reboiler steam inputs maximizing profit and minimizing cost. The problem is formulated in
(8) where the product recoveries are simulated at 95% of their deterministic value perturbed
by a normally distributed error:

max P = 0.177
(
D2xPropylene,2

) + 0.132
(
D2xPropane,2

) − 4.41 (Q R1 y1 + Q R2 y2)

−0.2 (QC1 y1 + QC2 y2)

s.t. D2 = 0.95�1 (R R1, R R2, Q R1, Q R2, QC1, QC2, F) + N (0, 5)

xPropylene,2 = 0.95�2 (R R1, R R2, Q R1, Q R2, QC1, QC2, F) + N (0, 0.01)

xPropane,2 = 0.95�3 (R R1, R R2, Q R1, Q R2, QC1, QC2, F) + N (0, 0.01) (8)

y1 + y2 = 1

5 ≤ R R1, R R2 ≤ 20

10 ≤ Q R1, Q R2 ≤ 50 [106 kJ/h]
F = 11, 646 kg/h, xPropylene,F = 0.6, xPropane,F = 0.4

where the indices i = 1, 2 are referred to columns 1 and 2, respectively; yi is the binary
variable expressing the existence of column i ; Di , Q Ri , QCi , RRi are the distillate flowrates,
reboiler duties, condenser duties, and reflux ratios of column i ; xPropylene,2, xPropane,2, are the
propylene and propane mole fractions of the column 2 distillate; F, xPropylene,F , xPropane,F

are the column 1 feed rate, propylene and propane feed mole fractions; and �1, �2, �3

represent the black-box models, which in this case are obtained using ChemCad simulation.
The objective represents a profit function where the first and second terms describe the profit
obtained by selling the distillate at a price of $0.177/kg propylene and $0.132/kg of propane,
respectively. The third and fourth terms represent heating and cooling costs, respectively. The
process simulator ChemCad is used to simulate the black-box functions and is called upon
as a slave program from the master driver in Matlab where the modeling and optimization
tasks are carried out. Results for this example are presented in Tables 1 and 3.

The computational overhead involved for this example is higher than the previous one
even though the problem dimensionality is lower due to the simulation expense. It is seen that
proposed algorithm is successful at finding the global optimum as evidenced by 86% conver-
gence. The optimal plant configuration consists of the 50-tray column preceding the 75-tray
column as shown in Fig. 6b. Using this configuration, the optimal design variables are as fol-
lows. The reflux ratios for the first and second columns are 11.94 and 9.73, respectively, while
the corresponding steam inputs to each reboiler are 28.72×106 kJ/h and 20.85×106 kJ/h.
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(a) (b) 

75 

75 

50

50 

6857 kg/h C-6 
4789 kg/h C-8 

  50 

6305 kg/h C-6 
432 kg/h C-8

552 kg/h C-6 
4357 kg/h C-8 

75 

Fig. 6 Propylene/propane sequencing problem consisting of two possible configurations for two towers (a)
and optimal configuration leading to 94% propylene distillate purity (b)

Table 3 Solution information for Example 2 using the Branch and Bound Kriging-RSM algorithm

Node Fixed Optimal Kriging RSM

0–1 vbls. information

(y1,y2) (R R1, R R2, Q R1, Q R2) P ($/h) Iter. Func. CPU Iter. Func. CPU

calls time (s) calls time (s)

1 (–,–) (9.82,10.59,13.2,17.9) 1021 5 52 176 2 12 41

2 (0,1) (9.49,15.55,22.1,31.4) 875 4 21 89 2 12 37

3 (1,0) (11.94,9.73, 28.72, 20.85) 931 5 26 113 3 17 43

An 85% propylene distillate purity is achieved in the first column which is improved to
94% in the second, leading to a $931/h profit. As expected, the tower that has more trays is
the one which is assigned to perform the more rigorous task of achieving propylene purity.
There is a high percentage of initial iterates converging to the global optimum due to the
trend of improved solutions obtained at lower reflux ratios and steam consumption, with the
remaining set of initial iterates converging at near-optimal values.

4 Conclusions and future work

In this work, a new Branch and Bound Kriging-RSM algorithm is presented for the solution
of constrained MINLPs containing black-box functions and noisy variables. The Branch and
Bound framework is used to efficiently search the 0–1 space for the integer global optimum,
thereby extending the capabilities of existing work to handle process synthesis problems.
Kriging is used to build global models of the black-box functions and the NLP subproblem
objective at each node of the binary tree. The surrogate models are used to identify subregions
where the relaxed NLP global optimum potentially resides. The set of best kriging solutions
serves as starting iterates for further refinement via optimization of sequential response sur-
faces. The additional costs resulting from global model creation are offset by highly successful
convergence to the integer global solution as shown by the represented examples. Current
work focuses on generating stochastic cuts based on global model information enabling the
Kriging-RSM algorithm developed for obtaining NLP solutions to be combined with other
MINLP frameworks such as Generalized Benders Decomposition and Outer Approximation
in order to reduce the modeling and optimization computational expenses.
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